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Abstract. The outer-product reduction coefficients (ORC) which reduce the representation 
(rep) induced from the irreps of the permutation groups S(fl)  and S ( f 2 )  into the irreps 
of S(fl +fi) are shown to be the ‘indirect coupling’ coefficients for the U ( m + p / n + q )  3 

U(m/n)  X U(p/q)  irreducible basis. The non-standard ORC for reducing the rep induced 
from the non-standard irreps of S( fi3) 3 S( f l )  x S( f3) and S( fZ4) 3 S( f2) X S( f4) into that 
of S(f) 3 S(f12) X S ( f 3 J 1  withf,, =fi +f,,f=f12+f3,,areidentified with theU(f)  2 U(fl,) X 

U(!,,) Clebsch-Gordan coefficients for the special Gel’fand bases of U(fi2) and U(f3J. 
The u ( m + p / n + q ) 3 U ( m / n ) x U ( p / q ) C ~ ~ ,  as well as its special case the U ( m + p ) 3  
U(m) XU( p )  CFP, are identified with the S( f )  3 S( f12) x S( f3J outer-product isoscalar 
factor. The U ( m / n ) 3 U ( m )  xU(n)  CFP are obtained from the U ( m + n )  xU(m)X 
U(n) CFP by simply changing all the partition labels for U(n)  into their conjugates 
(interchanging rows with columns) and taking into account a phase change. The CFP can 
be calculated from the ORC. Numerical values of the one-body CFP for systems with up 
to six particles are tabulated. 

1. Introduction 

There exist many interesting and deep connections between the unitary group U( n) 
and the permutation group S(f) due to the so called Schur-Weyl duality (Haase and 
Butler 1984a). A few of them which are related to our discussion here are as follows. 
The Yamanouchi (YB) or standard basis of S(f)  is the special Gel’fand basis of U(f)  
(Moshinsky 1966); the quasi-standard basis of S(f)  is the general Gel’fand basis (GB) 
of U(n) (Chen et a1 1977b, Sarma and Saharasbudhe 1980, Chen and Gao 1982); 
the Clebsch-Gordan coefficients (CGC) of S(  f) are the ‘indirect coupling’ coefficients 
for the U(mn) 2 U(m) XU(n) irreducible basis (IRB) (Vanagas 1972, Chen et a1 
1978b); the S( f) = S (  fi)  X S (  f2) inner-product isoscalar factors (ISF) are the U( mn) 1 
U(m)xU(n)  coefficients of fractional parentage (CFP) (Chen 1981, Chen et a1 
1983d, 1984b). 

A study of the U( m + n) 2 U( m)  X U( n) CFP from the Schur-Weyl duality has been 
carried out along several lines. The U(m + n) 2 U( m) X U(n) CFP is related to the 9f 
recoupling coefficient of S(f),  while the latter is in turn related to the outer-product 
reduction coefficients (ORC) of S (  f) which are the coefficients for reducing the induced 
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rep of S( f )  (Kramer 1967). The 6f and 9f recoupling coeflicients of S( f )  are identified 
with the 6f and 9f recoupling coefficients of U( n )  (Kramer 1968, Kramer and Seligman 
1969a). The matrix elements of the double coset generators (DCME) of S(f) are 
identified with the 9f recoupling coefficients (Kramer and Seligman 1969b). Later, in 
a series of papers it has been shown that the DCME of S( f )  under the decomposition 
@S(f,)\S(f)/OS(f,) are equal to the DCME of U(n) under the decomposition 
@U(n,)\U(n)/@U(n,) (Sullivan 1975) and the weighted DCME of S( f )  are equal to 
the U( m + n )  2 U( m) XU( n )  CFP (Sullivan 1980b). An iterative procedure for evaluat- 
ing the DCME is proposed (Sullivan 1980a). The same problem has been attacked by 
Kaplan (1961a, b) and Kukulin et al (1967) by using the transformation coefficients 
(TC) from the standard to the non-standard basis of S(f)  and the 9f recoupling 
coefficients of SU(4), respectively. Thus it can be said that so far the relation between 
the ORC, TC and recoupling coefficients of S(f)  on the one hand, and the U(m + n) 2 
U(m) x U ( n )  CFP on the other hand, is well established, albeit in a roundabout way. 
However, a satisfactory algorithm for evaluating the U( m + n )  2 U( m )  X U( n )  CFP has 
not been seen yet, and a systematic tabulation of the CFP is not available. 

Section 2 is devoted to re-establishing the relation between the ORC of S(f) and 
the CFP of U(n)  in a most direct way, and to the method of computation of the CFP. 

Based on Moshinsky’s theorem identifying the YB of S(f)  with the special GB of U(f) ,  
we immediately see that the non-standard ORC (NORC) for reducing the rep induced 
from the irreps of S( f13) 1 S( f,) X S( f3) and S( f24) 2 S( fi) X S( f4) to the irreps of 
S( f )  2 S( fi2) x S( fj4) is nothing else but the U( f )  2 U( f12) x U( f3d CGC for the special 
Gel’fand bases of U(f12) and U(fj4). Then it is trivial to identify the S(f) =S(flz) X 
S( fj4) outer-product ISF(OISF) with the U( f )  2 U( f12) X U( f34) CFP. 

U(6) X U(4) IRB to the supersymmetry model 
in nuclear physics (Iachello 1980, Balantekin et af 1981), it is of interest to obtain 
the U( m / n )  U( m )  X U( n )  CFP. Since the restriction of the irrep of U( m/ n) to irreps 
of U( m )  X U( n) is very much like that of U( m + n) to U( m )  x U( n )  (Dondi and Jarvis 
1981, Balentekin 1982), we expect that the U( m/ n )  3 U( m )  x U( n )  CFP should be 
very much like the U( m + n )  1 U( m )  X U( n )  CFP. The remaining part of this paper is 
devoted to the CFP for the graded unitary group. 

In our previous papers it is shown that the YB of the graded state permutation 
group %f)  is the special GB of U(m/n) ,  and the ORC of 9(f) is the CGC for the 
special GB of U ( m / n )  (Chen et a l  1983b, 1984a). In § §  3 and 4, it will be demonstrated 
by using the duality argument that the ORC of S( f )  is the ‘indirect coupling’ coefficient 
f o r t h e U ( m + p / n + q )  = U ( m / n )  xU(p/q),anditsspecialcase,theU(m/q) 3 U ( m ) x  
U(q) IRB, just as the CGC of S( f )  is the ‘indirect coupling’ coefficient for the U(mn) 2 
U(m) x U ( n )  IRB. In 6 5 ,  the S( f )  =)S(fIz) XS(f,,) outer-product ISF is identified with 
the U ( m + p / n + q )  3 U(m/n)  XU(p/q)  CFP and U ( m + p )  =JU(m)  x U ( p )  CFP. In § 6, 
the U(m/q)  2 U(m) X U(q) CFP is discussed as a special case of the U( m + p / n  + q)  3 

U ( m / n ) x U ( p / q )  CFP with n = p = O .  The U(m/n)  =)U(m) x U ( n )  CFP is obtained 
from the U( m + n )  3 U( m )  X U( n) CFP by multiplying a sign factor and changing the 
partition labels of U(n)  into their conjugates. Section 7 contains tables for the 
U ( m + n ) I U ( m ) x U ( n )  and U ( m / n ) = U ( m ) x U ( n )  one-body CFP calculated from 
the ORC for systems with up to six particles. These tables are universal in the sense 
that they are applicable to any m and n, as long as m and n are large enough for the 
partitions (or Young diagrams) of U(m)  and U(n)  to be permissible. Section 8 is a 
summary and discussion on the duality of the reduction coefficients of S( f )  and U( m/ n) 
as well as on the phase problem. 

With the application of the U(6/4) 
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2. The non-standard ORC and U( m + n )  3 U( m) X U( n )  cGC 

The ORC first appeared in Kramer (1967). An improved projection operator method 
for calculating the ORC was suggested by William and Pursey (1976). A systematic 
study of the ORC, including definition, symmetry properties, applications, algorithm 
and tabulation, was undertaken by Chen et a1 (1978a) and Chen and Gao (1981). A 
more recent study of the induction transformation is given by Haase and Butler (1984b). 

Let 

( 6 1 ) = ( l 2 ? .  . . 7f1), ( 6 2 )  = ( f l  + 1, . * . 9 f ) ,  f = f 1 + f 2 ,  (2 . la)  

and S(f,) be the permutation group operating on the numbers of ( W i ) ,  i = 1,2.  Next 
we introduce (A) =f!/fl!f2! ordered sets (0) = (wl, 02), 

(2 . lb)  

constructed out of the numbers 1 , 2 , .  . . ,f. The left coset decomposition of S(f )  with 
respect to the subgroup S( fl)  X S( f2) is denoted by 

where the left coset representatives Qw are just the so-called order-preserving permuta- 
tions (MacFarlane and French 1960), 

(2.3) 

Applying the (i) Q,’s to the IRB of S(fl )  X S ( f 2 ) ,  

I Yyll(4))l YZ(&)), r, = 1 , 2 , .  . . , dim(u,), ( 2 . 4 ~ )  

ul and r, being the partitions and Yamanouchi symbols, while dim(a,) are the 
dimensions of the irreps [U,] of S(fJ, we get altogether dim(ol) dim(cT2) ( f , )  basis 
vectors 

I Yyll(4)l  Y y o z ) ) ,  (2.4b) 

where Y ~ ( u ~ )  denotes a generalised Young tableau formed by filling the Young 
diagram [U,] with the numbers (U,) according to an order specified by the Yamanouchi 
symbol r,. 

The basis vectors (2.4b) carry the induced rep of S( f) ,  which can be reduced into 
irreps of S(f) through the use of the ORC, 

where 

(uem I u1 m1 u2m2) = (uerl U, rl w1 u2r202) (2.5b) 

is the ORC, 8 being the multiplicity label. Notice that the summation over m1 and m2 
in (2.5) is equivalent to that over rl ,  r2 and w1 (or w2). The same remark applies to 
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all similar cases below. The ORC satisfy the unitarity conditions 

2 (u~m~ulm1u2m2)(u’~’m’~ulm1u2m2) = Suu’S~wSmm’,  
mlmz 

z (~~ml~1ml~2mz)(~emI~lm;~2m;) = a m l m ; a m 2 m i *  

(2.6) 

uer 

Since a Yamanouchi basis vector of S(f) is a simultaneous eigenfunction of the 
f- 1 two-cycle class operators C,,,(n) of S(n>, n =f, f- 1 , .  . . , 2  (Chen et al 1977a, 
Chen and Gao 1982), the ORC can be calculated by diagonalising the f - 1 two-cycle 
class operators in the basis (2.4b). Based on this algorithm, a code in ALGOL-60 has 
been written and the ORC of S(2)-S(6) have been tabulated (Chen and Gao 1981). 

Moshinsky (1966) has proved that the YB of S ( f )  under the Young-Yamanouchi 
(YY) phase convention is identical (including the phase) to the special GB of U(f )  
under the Gel’fand-Zetlin (GZ) phase convention. Therefore, the generalised Young 
tableau in (2.46) can be regarded as the Weyl tableau; (um) and luimi) are the special 
GB of U(f ) ;  whereas the ORC in (2.5) are just the CGC for the special GB of U(f) 
(Chen et a1 1978a). 

Kramer (1967) used the notation (earl u1rluzr2, U) for the ORC. We prefer to use 
(u~mlu lmlu2m2) ,  since it reminds us that the ORC is a CGC of the U( f )  special GB. 

To be concise in notation, we will drop all the multiplicity labels in most of our 
discussion below, and restore them only when it is necessary. We will also stick to the 
YY and GZ phase conventions. 

Now we extend the ORC to the non-standard ORC. Let 

Group the numbers 1 , 2 , .  . . , f into four sets (U,) consisting of fi numbers in ascending 
order under the restriction that 

( 4 ,  ( 0 2 )  E (192, 9 ,f12), (03),(Wq)E(f,z+l,...,f). (2.7) 

There are altogether (q;) ordered sets of (w1, w 2 )  and (9;) ordered sets of ( w 3 ,  w4). 
The NORC are the coefficients for reducing the rep induced from the irreps of S(fI3) 2 

the coefficients in the following expansion: 
S ( f l ) x S ( f J  and s(f24)=S(f2)xS(f4) into the irreps of S(f)=S(f12)xS(f34) ,  namely 

U U 

where mi = riwi, and is the S’(fI3) = S’(fl)  X S’( f3) IRB, s’(f13), S’(fl) and S’( f3) 
being the permutation groups operating on (u l r  w3), (wl) and (w3), respectively. The 
meaning of the other two IRB in (2.8) is similar to the above. 

According to Moshinsky’s theorem and the assigned ranges for the numbers in the 
sets (U,) specified by (2.7)’ it is readily seen that the YB lulml), Iuzm2) and (u12m12) 
are the special GB of U(fi2); Iu3m3), lu4m4) and 1u34m34) are the special GB of U(f34); 
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whereas all the three non-standard bases of the permutation groups S( f), S'( f13) and 
S'( f24) in (2.8) are the U( f )  =I U( f12) X U( f34) IRB, with the unitary groups U(f),  U(f12) 
and U(f34) operating on the indices (1 ,2 , .  . . ,f), (1 ,2 , .  . . , f12) and (f12+ 1 , .  . . ,f) 
respectively. This means that the NORC in (2.8) are identical (including the phase) to 
the U( f )  =U(f12) x U ( ~ ~ ~ )  CGC for the special GB of U(f12) and U(f3,). 

We note that an equation similar to (2.8) is given by Kramer (1967). However, 
his equation (4.15) is incorrect. The point is that ul, . . . , U, are the summation indices 
instead of the arguments of the non-standard basis of S(f). 

The NORC can be factorised as 

I U 

u1 2 m12u34m34 u1 ml u3m3, u2m2u4m4 

namely, 

N O R C = ( S ( f ) = S ( f i 2 ) X S ( f 3 4 )  OISF)XS(fi2) ORCXS(f34) ORC. 

From the unitary group point of view, the same equation can be interpreted as 

CGC= (u(f) ='u(fiz)Xu(f34) CFP)XU(f12) CGCXU(f34) CGC. 

It follows immediately that the S( f )  3 S( f12) X S( f34) OISF is precisely the U( f) 3 

U( f12) XU( f34) CFP. To stress this point, let us write 

( U 1 U13 u 2 4 )  =( 1 u13 u 2 4 )  (2.10) 
u12u34 u1'3, u2'4 S(f) u12'34 u1'3, u2'4 U ( m + n )  

using ( 2 . 9 ~ )  and (2.6), the CFP can be expressed as 

(2.9b) 

I (+13 

U 

U1 mlU3m3, a2m2u4m4 

~ ( u ~ ~ m ~ ~  I u1 m1u2m2Xu34m34 I u3m3u4m4). 

Kramer (1967) shows that (2.9b) can be expressed in terms of the 9f recoupling 
coefficient of S(f) ,  

(2.11 b) 

By using the TC of the permutation groups (Jahn 1954,Kaplan 1961a, b, Kramer 
1967), and noting that the summation over m l , .  . . , m4 is equivalent to that over 
rl ,  . . . , r4, w1 and w 3 ,  and the summation over r13 and r24 implies a summation over 
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rl and r2,  the CFP in (2.96) can be put into the form 

( u i r u 3 4  I :S, ~ ~ 4 ) e 1 2 e 3 4 e 1 2 3 4  

e13e24el 324 

fix ’12‘34 

= C C (url e1234, (+12r12u34r34)((+13r131 813, u1r1‘3r3) 
‘I 3‘24‘3’4’ w l  ‘“3 

x (u24r24 I eZ4, UZrZu4r4) (ae l324ml  %3m13‘24m24) 

( u l 2 8 1 2 m l 2  I ulmlu2m2) ( ‘34834m34  I u3m3‘4m4), (2.12) 

where the first three factors on the RHS are the TC, and 

m.. 11 = r .w.  11 ‘I’ (oij) = (mi,  w j ) ,  for( i j )=(13) , (24) .  

With the programs or tables for the TC (Chen et a1 1 9 8 3 ~ ) ~  and ORC (Chen and Gao 
1981), from (2.12) we are able to evaluate the U ( m + n )  3 U(m) XU(n) CFP. 

In the case where any one of the multiplicity labels is redundant, or when only the 
one- or two-body CFP is concerned, simplifications occur for (2.12). For example, for 
the one-body CFP, f34 = u34 = 1. Then either u3 = 1, U, = 0 or u3 = 0, U, = 1. Therefore 
the indices u3, U,, a34, eI3, eZ4 and 01234 are redundant, and (2.12) reduces to the 
S ( f ) I s ( f - l )  OISF 

( 1 u13 u24 I :; 2;):;: 
u12‘34 u i u 3 ,  uzu4 e12e34e1234 

where simpler notations for the partition labels have been used; the two ORC in (2.134) 
refer to the S(f) and S(f- 1) groups. Note that Iu’m’) and lulml) are the basis vectors 
resulting from ignoring the last particle f in the basis vectors Ium) and luimi), i = 1,2 ,  
respectively, and due to the branching rule, we have 

[u]m = [u][a’]mr, [oilmi = [ai][ul]ml. (2.13 b) 
Obviously, if the last particle is not in luimi), then lu;ml) = Iujmi). 

When the multiplicity label 8’ is redundant, (2.134) is further reduced to 

For example, 

[321] [21] [21] (e )  

L31111 [21 [ 2 1 J  = 

( 2 . 1 3 ~ )  

for 6 = 1, 
for e = 2, 

;o)l/2/(&)l/2 = 1 1/2 (id 9 

(id / L o )  - ( I 2 1  7 
=(‘- 1 1/2 1 1 / 2 -  2 1/2 (2.14) 

where the S(6) and S ( 5 )  ORC are taken from Chen and Gao (1981). 
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From this example we can see that it is trivial to obtain the one-body CFP once the 
ORC are known. The U( m + n )  2 U( m) X U( n )  one-body CFP have been calculated 
from (2.13) and are tabulated in § 7. 

3. The U ( m + p / n + q ) ~ U ( m / n ) x U ( p / q )  IRB 

For establishing the duality of the reduction coefficients of s( f) and U( m/ n ) ,  we need 
the following two preliminary theorems. 
Theorem 1. The necessary and sufficient condition for a function $(“I to belong to the 
basis space of an irrep (U) of a group G is that +(gj is an eigenfunction of the csco 
of G possessing those eigenvalues which serve to characterise (U) (Chen et a1 1977a, 
1983e). 

The csco of G is a complete set of commuting operators in the class space of G. 
For a compact Lie group of rank 1, the csco is just the set of 1 Casimir invariants of 
G, while for a finite group, the csco consists of a few clas: operatFrs of G. For 
example, the csco of the graded permutation group s ( f )  is C(f)  = (C(z,(f), &(f)) 
for fS 14, where e,,,(f) is the i-cycle class operator of s(f) (Chen et a1 1983b). 
Theorem 2. In the f-particle product-state space with M ( N )  boson (fermion) single- 
particle states, referred to as the graded space L, the Casimir invariants IF” of 
U(M/N)  are functions of the csco of s(f) (Chen et a1 1983b), 

k k ( e ( f ) ) ,  k = l , 2 , .  . . , M + N .  (3.1) I M I N  = F M / N  

As we will see, it is due to these two important theorems that each reduction 
coefficient of s ( f )  of U(M/N) plays dual roles; one is related to its own group, called 
the direct role, and the other is related to another group, called the indirect role. 

Consider two subsystems, one in the configuration A’IB’2, and the other in A’3Bf4, 
A = A l ,  Az, . . . ,Am+,,  B = €4, BZ, . . . , Bp+4, spanning the defining rep of U(m/n) 
and U ( p / q ) ,  respectively. In the graded space L, we need two types of labels to specify 
a basis vector uniquely, one specifying its transformation under the graded permutation 
group and the other specifying its transformation under the graded unitary group. Let 

(3.2) 
I ) O =  1 ) O  r, = 1 , 2 , .  . . , dim(a,), 
m1 WI rl% WI w, = 1 , 2 , .  . . , Dim(a,), 

be the YB of $f,) operating on the indices ( U , )  and the IRB of U ( m / n )  for i =  1 , 3  
and of U( p / 4 )  for i = 2,4,  where the meaning of ( U , )  is the same as in § 2, and Dim(u,) 
is the dimension of the irrep[u,] of U(m/n) or U ( p / q ) .  
Theorem 3. The ORC of S(flz) are the ‘indirect coupling’ coefficients for the 
U( m + p / n  + q )  2 U( m / n )  x U( p / q )  IRB: 

Proof. Since the graded permutation group s(f) and the ordinary permutation 
group S(f) are isomorphic (Dondi and Jarvis 1981), they must have identical 
irreducible matrix elements, CGC, ORC and TC. Therefore the LHS of (3.3) is the YB 
of s(flz). According to theorem 1, it has to be an eigenfunction of the csco of s(flz). 
On the other hand, due to (3.1), it is necessarily an eigenfunction of the csco of 
U( m + p /  n + 4). Again by theorem 1, it must belong to an irrep of U( m + p /  n + q ) ,  
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which can be conveniently labelled again by the partition [u12]. Besides, the indices 
alwl  and u 2 w 2  are kept fixed in the summation in (3.3), therefore the LHS of (3.3) 
continues to be the IRB of U(m/n) and U(p/q). All taken together, equation (3.3) 
is the YB of s( f12)  and the U( m + p /  n + q )  2 U( m/ n )  x U( p / q )  IRB. 

From the above discussion we see that due to theorems 1 and 2, in reducing the 
induced rep of s( f12),  the ORC ‘indirectly’ couple the IRB of !i( f l )  and U( m/ n )  with 
the IRB of s( f2) and U( p / q )  to that of U( m + p /  n + 4). 

When n = q = O ,  the U ( m + p / n + q ) 2 U ( m / n ) X U ( p / q ) 1 ~ ~  (3.3) reduces to the 

By interchanging the roles played by the graded permutation group and the graded 
unitary group, and following the same reasoning, we have: 
Theorem 4. The CGC of U(m/n) are the ‘indirect coupling’ coefficients for the 

u(m+p) =U(m)xU(p) IRB. 

S(f13) 3 W I )  XQfJ IRB, 

where O(a12w13 I u1 w 1 ~ 3 w 3 ) 0  designate the CGC of U(m/n). 
When n=O, (3.4) reduces to equation (6.8) in Kramer (1968). 

4. The U ( m / n ) 3 U ( m ) x U ( n ) I ~ ~  

When n = p = 0, (3.3) becomes the U(m/q) 3 U( m) x U(O/q) IRB with the 
U(m/O)( =U(m)) IRB I m y ~ ’ t v , ) o  = l,,,yhI) referring to bosons and the U(O/q) IRB Im?w’2w,)o 
to fermions. We will show that the U(m/q) 3U(m) XU(O/q) IRB differs from the 
U(m/q) 3 U(m) xU(q) IRB only in a phase factor. To this end, we need to find the 
relationship between the IRB of U(O/q) and U(q). 

Up to now, we have had no restriction whatsoever on the basis choice of U( m/ n )  
and U(p/q). For definiteness, in what follows we will choose the extended GB for 
them and thus the index w represents a graded Weyl tableau (Chen et a1 1983b), 
keeping in mind that the discussion is valid for other choices of basis as well, since the 
CFP is basis independent. 

According to Chen et a1 (1983b), the Gel’fand basis of U( p / q )  and the YB of s(f) 
can be constructed by applying a non-standard projection operator Ppl(m) of s(f) to 
the f-particle product state IQ). After adjusting to the notation used here, equation 
(2.27) in Chen et al (1983b) reads 

( 4 . 1 ~ )  

(4 . lb)  

where /[a]( m)) is a non-standard basis vector of Srf) which has a one-to-one correspon- 
dence with the graded Weyl tableau w. For a totally bosonic tableau w (i.e. the 
ordinary Weyl tableau), I[ U]( m)) is represented by the so-called symmetric parenthesis 
(essentially the extended Yamanouchi symbol) introduced by Sarma and Saharasbudhe 
(1980), whereas for a totally fermionic w, I[a](m)) is represented by the antisymmetric 
parenthesis (Chen and Chen 1983). The non-standard basis l[a](m))  can be expanded 
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in terms of the YB of S ( f ) .  Suppose l[a](m)) is an antisymmetric parenthesis, 

(4.2) 
S 

According to the phase convention (Chen and Chen 1983), the coefficient u ( ~ ) , %  

associated with the maximum possible (in Hamermesh’s ordering (Hamermesh 1962)) 
Yamanouchi symbol so is chosen to be positive, 

a(m),so> 0. (4.3) 

From the symmetry of the expansion coefficients under conjugation (Chen and Chen 
1983,§ 3), the symmetric parenthesis 1[6](6)) conjugated to the antisymmetric paren- 
thesis I[a](m)) is easily obtained from (4.2) by changing the YB I[a]s) to its conjugate 
and inserting the phase factor As (Hamermesh 1962, p 266) in front of I[6]$, i.e. 

S S 

where the sign factor A(m) is decided by the phase rule that the coefficients u ( ~ ) , ~  for 
the symmetric parenthesis are always positive (Chen and Chen 1983). Choosing s’ to 
be the conjugate of the maximum possible Yamanouchi symbol so, from (4.4a) we have 

(4.4b) 

(4.5) 
where 8, is the parity of the permutation p.  Inserting (4.5) into (4.1), using the 
property of the YY matrix element 

([qlrl pI[~ls)fi, = A,As([61fl p l [ 4 q ,  (4.6) 
and (4.4), we have 

where 

(4.7u) 

(4.76) 

is the IRB of U(q) and the ordinary permutation group S ( f ) ,  and 6 the ordinary Weyl 
tableau conjugate (interchanging rows with columns) to the graded Weyl tableau w. 
Equation ( 4 . 7 ~ )  is the extension of (31b) in Chen et a1 (1983b). 

Using ( 4 . 7 ~ )  and interchanging uz-Gz, rz++Fz and w2-6z ,  the U ( m / q )  2 U(m) X 
U(O/q) IRB (3.3) reads 

where f iz  = Fzoz. It is seen that the I R B  of U( m / q )  2 U( m) X U(O/q) and U( m / q )  3 

U(m) xU(q) only differ by the phase factor A,+ Therefore the U ( m / q )  2 U ( m >  X 
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Example. Let us give the simplest non-trivial example to illustrate the use of the 
formula (4.9), namely for constructing the YB basis of the graded permutation group 
s(4) and the U(1/2) 3 U ( l ) X U ( 2 )  IRB 

(4.10) 

with a denoting a bosonic state, and a, p two fermionic states. For this purpose, we 
need the [l]X[21]+[31] ORC, taken from Chen et a1 (1978a) and listed in table 1 .  

Table 1. The ORC ([31]m l[l]m,[21]m2). 

23 13 12 12 24 14 14 13 
4 2, 4 31  4 43  3 1* 3 2, 3 2 4, 2 

3, N t  1 ,  

[31]1 123 43 1 1 1 

[31]2 124 496 -1  -1  2 6 JE 427 
[31]3 134 4% -1 1 -J3 J3 J12 JE 

4 

3 

2 

t N is the norm. 

From (4.9), table 1 in this paper as well as table 3 in Chen et a1 (1983b), one has 
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5. The U( m + pln + q )  3 U( mln) X U( p l q )  CFP 

To simplify notation, let M = n + p  and N = n +q. The convenient bases for the 
subsystems AfiBf2 and Af3Bf4 are the YB of s(f12) and U(M/N)=U(m/n)X 
U(p/q)  IRB, and the YB of s(f34) and U ( M / N )  I U ( m / n )  XU(p/q) IRB, respectively, 
i.e. 

(5.1) 

The basis vectors in (5.1) can be coupled (direct coupling!) to the U(M/N)  IRB 
by using the U(M/N) 3 U( m/n)  XU( p / q )  CGC, which can be factorised as 

U ( M / N )  3 U( m/ n) x U( p / q )  CGC = (U(M/N)  3 U( m/ n) x U( p / q )  CFP) 

x U( m/ n) CGC X U( p / q )  CGC, 

and the resulting basis, due to theorem 4, is also the s( f )  3 s( f12) X s( f34) IRB, namely 

i’ U 

u12m12u34m34, u13 w13‘24 w24 

where the first factor on the RHS is the U(M/N)  3 U( m/n)  X U( p / q )  CFP. The square 
bracket denotes the coupling in terms of the U( m/n)  and U( p / q )  CGC simultaneously, 

(5 .3a)  

(5 .3b )  

The above procedure for constructing (5 .2)  is, so to speak, the unitary group 
approach. Alternatively, we can use the permutation group approach to construct the 
same basis. Out of the following two sets of basis vectors, 

Sf(f13) Is’(f1)  ‘s’(f3) s’(f24) 3 s f ( f 2 )  ‘S’(f4) 
and U( m/n)  IRB 

I u i m 1 2 i 3 ,  w13 

and U( p / q )  IRB 

(5.4) 
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by using the NORC (2.9a), we can construct the s(f) =)S(f12)XS(f34)  IRB, which is, 
due to theorem 3, also the U(M/N) =) U( m/ n )  XU( p / q )  IRB. Thus we have 

J Q Chen, M J Gao and X G Chen 

U 

u12m12u34m34, U13 w13'24w24 

I g13 )' 1 U24 )0}"""" 9 

f f lU3,  w13 u2'4~ w24 m12m34 
( 5 5 2 )  

where the braces indicate that the bases are to be combined into the YB of s( flZ)  and s(f34) in terms of the ORC of S(fl2) and s(f34), i.e. 

(5.5b) 

Using (3.4), it is easily seen that B = d. Thus the equality of the LHS of (5.2) and 
( 5 . 5 2 )  leads to the identification of the U(M/N) 2 U(m/n)  x U ( p / q )  CFP with the 
S(f) = S(f12) x S(f34) OISF, 

( U 1 u12 u 3 4 )  =( ff 1 u13 u 2 4 )  
(5 .6)  

Since the OISF is independent of m, n, p and q, from (5.6) we know that the 
U ( m + p / n + q )  I U ( m / n ) x U ( p / q )  CFP is identical to the U(m+p)  D U ( m ) x  
U(p) CFP. Combining (5.6) with (2.10), we see that the OISF, the U ( m + p )  = U ( m )  x 
U( p )  and U( m + p /  n + q )  2 U( m/ n) X U( p / q )  CFP are identical to one another, and 
have the symmetry 

u13U24 u1'2, u3'4 U ( M / N )  ff12(+34 u1'3, f f Z U 4  S(f) 

ff13 f fZ4 ) e 1 3 e 2 4 e 1 3 2 4 ,  

f f i f f3 ,  f fzff4 e12e34e1234 
(5.7) 

where we have deleted the redundant subscripts S(f) ,  U ( m +  n)  and U(M/N)  in the 
ISF. From (2.12) and the symmetries of ORC and TC (Chen er al 1978a, Kramer 1968), 
we have another symmetry for the CFP, 

( 5 . 8 )  

where 7 is a phase factor depending on all the nine partitions. 
It should be stressed that in (2.10) and (5.6),  there is no extra adjustable phase 

factor between the OISF and CFP, once the YY and G Z  phase conventions are used for 
reps of S ( f ) ,  U(m) and U(m/n)  (Chen and Chen 1983). 
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6. The U( m/n) 1 U( m) X U( n) CFP 

Suppose that n = p = 0; then the IRB l,,&)" in (3.2) are bosonic for i = 1 , 3  and fermionic 
for i = 2 , 4 .  In (4.91 we showed how to construct a U(m/q)>U(m)xU(q)  IRB 

for the subsystem AfIBf2. A similar equation exists for the subsystem Af3Bf4. Similar 
to (5.2), the CFP expansion for the U(m/q)  >U(m)  XU(q) IRB of the total system is 
as follows: 

& 
~lZh12834h34, U1 3 w13u24 w24 

where the first factor on the RHS is the U( m/q)  2 U(m) x U(q) f34 -b~dy  CFP, and the 
square brackets denote coupling in terms of the CGC of U(m)  and U(q), i.e. 

( 6 . 2 ~ )  

The above procedure is the unitary group approach. On the other hand, from 
(4.9) and ( 5 . 5 ~ )  we can get the same basis vector as (6.1) via the permutation group 
approach, 

where 

(6.3) 

(6.4) 

By transforming the non-standard basis of s( fZ4) to the standard one, and making use 
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of ( 4 . 7 ~ )  as well as the symmetry of the TC of s ( f 2 4 )  under the conjugation, we obtain 

where E ( 6 . 2 6 4 6 2 4 )  is a phase factor determined by the absolute phase convention of 
the TC (Chen et al 1983~) .  

Substituting (6.5) into (6.4), and using (3.4) (which is still valid for n = O ) ,  we can 
prove that 

3‘ = & ( 6 2 6 4 6 2 4 ) & ’ .  (6.6) 

On equating the LHS of (6.1) with (6.3) and using (5.7), we obtain a very simple relation 

( I u 3 4 ) ) = & ( 6 2 d 4 6 2 4 ) (  1 ut2 (6.7) 
u13‘24 u1‘2, u3‘4 u13‘24 (+1(+2, u3‘4 

namely, the U( m/ n )  3 U( m )  X U( n )  CFP and U( m + n )  2 U( m )  X U( n )  CFP differ only 
in the labelling for the irreps of U(n) and a phase factor & ( 6 2 6 4 6 2 4 ) ,  which are easily 
determined from the TC tables and have been listed in table 1.3 in Chen et a1 (1983~) .  
A relation between ~ ( u ~ u ~ u ~ ~ )  and & ( c i 2 6 4 6 2 4 )  is given by equation (4.5) in Kramer 
(1968). 

For the one-body CFP, f34 = u34 = 1 ,  the phase factors E ( 6 2 6 . 4 6 2 4 )  with u4 = 1 or 0 
are identically equal to one. Again using the simplified notations for the partitions 
shown in (2.13a), from (5.7) and (6.7) we obtain relations about the one-body CFP 
as follows: 

It is thus seen that the U( m / n )  3 U( m )  X U( n )  and U( m + n )  2 U( m )  X U( n) one-body 
CFP can be listed in the same table, as is done in § 7. 
Special case. For a general U ( m / n )  or U(m + n )  CFP, it is not possible to get 
closed analytic formulae, and one has to be content with numerical results. 
Nevertheless, simple expressions do exist for the special cases where the irrep [U] is 
either totally symmetric or totally antisymmetric. Let us first consider the U( m + n) 
case with totally symmetric rep [U] = [f]. In such a case, all the irreps [ui] are necessarily 
also totally symmetric, 

[ail = [ f i l ,  i = 1 , .  . . ,4 ,12 ,34 ,13 ,24 .  

The NORC in (2.8) reduces to the standard ORC for the totally symmetric reps, which 
is just equal to the binomial coefficient (Chen 1984), 

(6.9) 

I u13 u24 ) U 

u12m12u34m34 ( ~ l m 1 ~ 3 m 3 ,  (+2m2U4m4 

= ([flm I [ f i 3 h 3 ,  [ f24lm24)  = (fi3!fi4!/f!>”’.  

( 
From ( 2 . 9 ~ )  and (6.9) we obtain a simple expression for the U ( m + n )  = ~ U ( m ) x  

U( n )  CFP 

(6.10) 
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The U(m + n )  2 U( m) XU( n )  CFP for the totally antisymmetric irrep [a] = [f] is 
obtained from (6.10) through the use of the symmetry relation (5.8). 

Using (6.9), we immediately obtain the U( m/ n )  3 U( m )  XU( n )  CFP for the totally 
symmetric irrep [U] = [f] of U(m/n), 

(6.11) 

with [fl], [f3] and [f13] specifying the totally symmetric representations of the boson 
subsystems, and [ fz], [ f4] and [ f24] specifying the totally antisymmetric representations 
of the fermion subsystems. The special CFP of (6.11) is of importance in the study of 
the supersymmetry in nuclei with the interacting boson model (Balantekin et a1 1981). 

7. Tables of the one-body CFP 

With the ORC table (Chen and Gao 1981) and equation (2.13), the one-body CFP for 
U( m + n )  =J U( m )  X U( n )  or U( m / n )  =I U( m )  X U( n )  have been calculated for systems 
with up to six particles. The results are given in tables 2-26. All the partitions are 
arranged in order of decreasing row symmetry from top to bottom in the corresponding 
Young diagrams. The tables are arranged in the order of ([a,][a2][a’]). We only 
listed the CFP for the products [a,] X [a2], where [az] is below [al] and [a,] is no lower 
than the self-conjugate partition. The remaining CFP can be found from the symmetries 
of the CFP. For example 

( [a1 1 [U’] [I])@ = [U1 I [p’! [I])@ 7 

Ul(+Z 40;, 8‘ ( T Z U 1  U 2 V 1 9  e’  
(7.1) 

7, = E , ( U ,  a 2 4  El( U ;  ~ ; a ’  e’), 
where the phase factors ~ , ( a , a ~ a B )  and el(via;u’6’) come from the symmetry of the 
ORC (see equation (4-153) in Chen 1984) and are listed in table A2 in Chen (1984). 

The table headings have the following meaning: 

All the entries represent the square values of the CFP, and a minus entry signifies a 
negative CFP value. 

A whole class of unit CFP has not been included in the tables. Whether a CFP is a 
unit CFP can be judged from the Littlewood rule 

(7.2) 

Tables for the multiplicity { u ~ u ~ ~ }  are available (Itzykson and Nauenberg 1966). We 
have 

(7.3) 
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Tables 2-26. The one-body CFP 

and the one-body CFP 

Table 3. (3)  X (1) Table 4. (21)X(1) 

(21) (0) 318 1/4 3/8 
(2) (1) 1/16 3/8 -9/16 

(11) (1) 9/16 -3/8 -1/16 

Table 5. (a)  (2)x(2)  Table 5. ( b )  

I ' 

Table 7. (4) x (1) Table 8. (31)x(1) 

I 

Table 10. (211)X(1) Table 11. (a) (3)X(2) 

Table6. (2)X(11) 

Table 9. (22) X (1) 

(22) x (1) 

I 

Table 11. ( b )  

Table 12. (3) x (1  1) Table 13. (a)  (21) x (2) Table 13. ( b )  

(3) (1) -1 /5  4/5 
(2) (11) -3/5 (2) (2) 
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(3) (2) 
(21) (2) 

Table 13. (c )  Table 14. (a)  (21)x(11) Table 14. ( b )  

1/36 5/12 -5/9 
5/9 -1/3 -1/9 

Cable 14. ( c )  

I 

:11) (11) -1/3 1/15 

Table 17. (32) X (1) 

-J-2%c 

Table 15. (5)X(1) Table 16. (41) x (1) 

( 5 )  (0) (41) (0) 5/24 5/12 

Table 18. (311)x(1) 
1 

(311) x (1 )  
(411) (321) (313) 

5/18 4/9 5/18 
1/36 5/18 -25/36 

25/36 -5/18 -1/36 

Table 19. ( 2 2 1 ) ~ ( 1 )  Table 20. (a) (4 )x (2 )  Table 20. ( b )  
, 

Table 21. (a)  (31)X(2) 

2/5 1/3 4/15 
1/15 2/9 -32145 
8/15 -4/9 -1/45 
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(211) x (2) 
(221) 

(211) (1) 
(21) (2) 

(211)X(2) 
(321) (2'1') 

4/5 1/5 
1/5 -4/5 

Table 25. (a)  (3)X(21) 

(32) 

(21) (2) 
(21) (11) 

(2) (21) 
(11) (21) 

(41) (51) (42) (411) 

(21) x (21) 
(42) (321)a (321)p (33) 

-1/20 9/20 1/4 1/4 
9/20 1/20 -1/4 1/4 

-1/20 9/20 -1/4 -1/4 
9/20 1/20 1/4 -1/4 

(3) (2) 

(311) 

(21) (2) 
(21) (11) 

(2) (21) 
(11) (21) 

Table 26. ( a )  (21)X(21) 

(21) x (21) 

~~ 

(21)X(21) (21) x (21) 
(411) (312)a (321)p (313) (221) ( 3 2 1 ) ~  (321)p (23 )  (2212) 

-1/12 1/12 -5/12 5/12 (21) (2) -1/4 1/20 1/4 9/20 
5/12 5/12 -1/12 -1/12 (21) (11) 1/4 9/20 1/4 -1/20 
1/12 1/12 5/12 5/12 (2) (21) -1/4 -1/20 1/4 -9/20 

-5/12 5/12 1/12 -1/12 (11) (21) 1/4 -9/20 1/4 1/20 

Table 23. ( c )  

(21') 

Table 24. ( c )  

Table 25. ( c )  r (311) (411) (321) 
(3) X(21) 

Table 26. ( c )  Table 26. ( d )  

8. Summary and discussions 

The relations established by Kramer and Sullivan exist only between the invariants 
(recoupling coefficients) of U(n)  and S ( f )  and no simple relation between the CGC of 
U(n)  and the reduction coefficient of S( f )  was known to exist before 1978. However, 
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there must exist a relation between these two coefficients, since the 6f or 9f recoupling 
coefficient can be expressed either in terms of the CGC of U(n),  or the TC of S ( f ) .  
Equation (23) in Chen et al (1978a), or its extension, equation (3.4) in Chen et a1 
(1984a), first gave a quantitative relation between the CGC of U(n) and the outer- 
product reduction coefficient of S(f) .  It was shown (Chen 1979, 1984) that the ORC 
and TC of S ( f )  are related by 

( c ~ I ( + i r i ~ i ,  c 2 r 2 0 2 ) =  C ( c 1 ( + 2 ~ )  C ( ( + ~ I Q W I ( + S S ) ( ~ S I ( + ~ ~ ~ ( + ~ ~ ~ )  

where (mrl QJes) are the Yamanouchi matrix elements for the order-preserving 
permutation 0,. Thus a direct relation between the CGC of U( n )  and the TC of S( f )  
was established. A totally equivalent formula was derived by Nikam et a1 (1983, 
equation (18)) for the CGC of U( n )  in terms of the TC of S( f). 

Specialised to the m = n = 1 case, the U(m + n) 3 U(m) X U(n)  CFP is just the 
SU(2) CGC, and ( 2 . 1 1 ~ )  reduces to equation (3.8) in Kramer and Seligman (1969a), 
in which the SU(2) CGC is expressed in terms of the 9f recoupling coefficient of S(f)  
in order to explain the Regge symmetry of the 3j symbol of SU(2). 

From the present paper and our previous paper (Chen et a1 1984a, b), we have 
reached the dualities shown in table 27 between the inner product and outer product 
of the permutation group on the one hand, and between the unitary group subduction 
U( mn)J.U( m) X U( n )  and U( m + n)J.U( m) X U( n )  on the other hand. 

The branching rules for the subductions SU( mn)J.SU( m) X SU( n )  and 
SU( m + n)lSU( m) X SU(n) (Itzykson and Nauenberg 1966), as well as for 

and SU(m/n)lSU(m) xSU(n)  (Dondi and Jarvis 1981, Balantekin 1982) are the 
natural consequences of the dualities shown in table 27. These dualities not only 
greatly deepen our understanding of the permutation and unitary groups, but also 

s 

W m P  + nq/ w + np)J.SU(m/n) x SU( P/4), SU(m +pin + q)lSU(m/ n )  x S U ( p / q )  

Table 27. Dualities between the unitary and permutation groups. 

~~ 

Permutation group Unitary group 

CGC (or the inner-product 
reduction coefficient) of S ( f )  

ORC (the outer-product 
reduction coefficient) of S(f) 

Indirect coupling coefficient for U(mp+ nq/mq+ n p )  2 
U(m/n)  x U ( p / q )  IRB, or its special case, U(mn) = U ( m )  x 

Indirect coupling coefficient for U( m + p/ n + 9) 3 U( m/  n)  x 
U(p/q) IRB, or its special case, U( m + n) 3 U (  m) x U( n )  IRB, or 
U ( m / n )  3 U(m) x U ( n )  I R s t  

U(n)  IRB 

ORC Of s(f) 
ORC Of g( f )  
NORC Of s( f )  

CGC for special GB of U(m)  
CGC for special G B  of U ( m / n )  
CGC of u ( m + n ) = U ( m ) x U ( n )  for u ( m )  and u ( n )  special GB 

Indirect coupling coefficient 
for S(f) 3 S(fl )  xS(f2)  

CGC of U ( m / n )  

f,-body CFP for U ( m p + n q / m q + n p ) ~ U ( m / n ) x U ( p / q ) ,  or its 
special case, U(mn)  = U ( m ) x U ( n )  

S(f )=S(f , , )xS(f ,4)  f34-body CFP for U(m + p / n + q )  3 U ( m / n )  x u ( p / q ) ,  or its 
outer-product ISF special case, U ( m  + n)  U ( m )  x U(n) ,  or U ( m / n )  U(m)  x 

U(n)+  

7 Due modifications are required in labelling and/or phase. 
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provide practical and rank-independent calculation methods for various kinds of unitary 
group CFP. 

The last issue to be discussed is the phase problem. Since irreps of U(m) remain 
irreducible on restriction to its subgroup SU( m) ,  the question arises as to whether the 
CGC or CFP may be the same for both groups. Bickerstaff and Damhus (1983) studied 
this problem in detail. Here we only mention that this is possible if appropriate phase 
choices are made for the U( m )  coefficients. It is shown that the U( m )  CGC evaluated 
from the ORC obey the Baird-Biedenharn phase convention (1965), and are identical 
with the SU( m )  CGC (Chen et a1 1984a). Since the phase of the CFP is decided by the 
phases of the CGC, we expect that the U(m + n) 2 U(m) X U(n) CFP tabulated in 0 7 
are also the SU( m + n )  2 SU( m )  X SU( n) CFP. However, the problem is not clear yet 
with regard to the graded unitary group U(m/n)  and its subgroup SU(m/n) and 
deserves further study. 

Note added in proof. From (6.11) and the unitarity of the CFP, we can obtain an analytic expression for 
the U(m/n)  2 U ( m )  x U(n) one-body CFP for a system with N bosons and one fermion as shown in table 
28. 
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